The Fidelity Slider: a User-Defined Method to Trade off Accuracy for Performance in Canny Edge Detector

نویسندگان

  • Valery Kritchallo
  • Erik Vermij
  • Koen Bertels
  • Zaid Al-Ars
چکیده

This paper presents the concept of a fidelity slider, which is a user-defined method that enables trading off accuracy for performance in a parallelized application. The slider is defined in the context of the Canny edge detector, but can be generalized to other image processing algorithms. The slider moderates discontinuity issues introduced by an image-slicing technique used to increase the level of the parallelism in the Canny edge algorithm, and allows for strong scalability across multiple cores. The domain decomposition-based technique used by our method is a toplevel image-slicing loop incorporated into the algorithm to process segments of an image concurrently. The slider controls three factors to moderate the aggregate output data divergence induced by the parallelized Canny edge algorithm: 1. image slice overlap size, 2. the degree of histogram synchronization, and 3. the edge tracing continuity factor. Results show that the fidelity slider is able to control the tradeoff from a speedup of 7x at 100% accuracy up to a speedup of 19x at 99% accuracy, for an image of 8000x8000 pixels processed on an Intel Xeon platform with 14 cores and 28 hardware threads.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Balancing High-Performance Parallelization and Accuracy in Canny Edge Detector

We present a novel approach to tradeoff accuracy against the degree of parallelization for the Canny edge detector, a well-known image-processing algorithm. At the heart of our method is a single toplevel image-slicing loop incorporated into the sequential algorithm to process image segments concurrently, a parallelization technique allowing for breaks in the computational continuity in order t...

متن کامل

A FUZZY DIFFERENCE BASED EDGE DETECTOR

In this paper, a new algorithm for edge detection based on fuzzyconcept is suggested. The proposed approach defines dynamic membershipfunctions for different groups of pixels in a 3 by 3 neighborhood of the centralpixel. Then, fuzzy distance and -cut theory are applied to detect the edgemap by following a simple heuristic thresholding rule to produce a thin edgeimage. A large number of experime...

متن کامل

Evaluation of the Parameters Involved in the Iris Recognition System

Biometric recognition is an automatic identification method which is based on unique features or characteristics possessed by human beings and Iris recognition has proved itself as one of the most reliable biometric methods available owing to the accuracy provided by its unique epigenetic patterns. The main steps in any iris recognition system are image acquisition, iris segmentation, iris norm...

متن کامل

Directional 3D Edge Detection in Anisotropic Data: Detector Design and Performance Assessment

Abstract A new directional 3D edge detector designed for anisotropic image data is reported. The detector is based on interpolating the image intensity function in a small neighborhood of every voxel by a tri-cubic polynomial. The analytical approximation of the image intensity function is used to compute the intensity function gradients. The developed edge detector uses a maximum average of di...

متن کامل

Contour and boundary detection improved by surround suppression of texture edges

We propose a computational step, called surround suppression, to improve detection of object contours and region boundaries in natural scenes. This step is inspired by the mechanism of non-classical receptive field inhibition that is exhibited by most orientation selective neurons in the primary visual cortex and that influences the perception of groups of edges or lines. We illustrate the prin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016